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ABSTRACT
Bloodstream infection is a leading cause of mortality in patients
in the intensive care unit (ICU). Early detection and treatment of
bloodstream infection is associated with significantly better clin-
ical outcomes. However, the detection of bloodstream infection
requires a time-consuming blood culture. Far more blood cultures
are ordered than return positive; this excess of blood cultures can
cause delays in result and therefore treatment. In this study, we
aim to move towards a continuous monitoring tool to help doctors
and nurses in the ICU identify which patients require a blood cul-
ture, with the goal of supporting earlier detection and treatment of
bloodstream infection. We formulated this goal as a multivariate
time-series classification problem and applied powerful predictive
deep learning approaches to model multivariate time-series data.
We used a variety of model validation and explainability techniques
to help understand the decisions of these deep learning models and
promote trust in their predictions.

CCS CONCEPTS
• Computing methodologies → Neural networks; Supervised
learning by classification; Cross-validation; Feature selection; •
Applied computing→ Health informatics.
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1 INTRODUCTION
Bloodstream infections are associated with high risk of mortality,
long hospital stays, and expensive treatment [17]. Patients in the
intensive care unit (ICU) are at especially high risk of bloodstream
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infection given their already critical conditions and the common us-
age of intravenous catheters in their treatment. The most common
pathogens related to bloodstream infection are bacteria and other
microbes. The primary treatment option is broad-usage antibiotics,
which are becoming decreasingly effective as general antibiotic
resistance grows. Furthermore, the detection and diagnosis mecha-
nism for bloodstream infection is a blood culture [1], which has a
turnaround time of up to several days and a risk of contamination,
invalidating the result [2] [19].

Bloodstream infection remains a difficult disease to identify clin-
ically. Previous studies have demonstrated good results predicting
the presence of bloodstream infection [15], predicting the outcomes
of patients with bloodstream infection [22], and applying predic-
tive modeling approaches to identifying pathological signatures of
bloodstream infection [21]. In this study, we developed a predic-
tive model for bloodstream infection and then extended that result
towards a continuous monitoring tool for evaluating risk of blood-
stream in a time-aware environment. This continuous monitoring
is designed to inform doctors and nurses in the ICU when to draw
blood cultures and when to begin antibiotic treatment.

Our candidate predictive models for bloodstream infection pre-
diction were deep neural networks. We considered three main
classes: feed forward networks, recurrent neural networks (RNNs),
and convolutional neural networks (CNNs). We found that RNNs
and CNNs outperformed our baseline feed forward networks and
achieved significant predictive power in their results. We extended
our modeling results towards clinical usefulness in a continuous
monitoring setting by "sweeping" our model’s predictions over a
longer time window. In this way, we simulated a real clinical envi-
ronment in which the model outputs a changing fold risk score.

2 DATA
2.1 Data Pipeline
In order to establish a consistent data acquisition, preprocessing,
modeling, and explainability process, we built a modular pipeline
for each of these stages, with each stage producing output that
fit directly into the next stage. In such a way, we maintained an
understanding of our data at all times, could easily make changes
to any stage of the process in a controlled way, and could quickly
produce and reproduce experiments. In our data acquisition stage,
we combined raw comma-separated-value (CSV) files containing
data directly fromUniversity of Virginia Electronic Medical Records
(EMRs) about individual patients into a single data pool and refor-
matted the data as a TensorFlow dataset to optimize training with
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Figure 1: Broad pipeline flow of data from patients at risk
of bloodstream infection in the intensive care unit at the
University of Virginia, 2011-2015

TensorFlow implementations of our deep learning architectures.
The overall flow of our data processing pipeline is demonstrated in
Figure 1.

2.2 Data Description
The data used in our experiments was sourced from the University
of Virginia Electronic Medical Record. The population used to train
our machine learning models was a collection of 3969 patients
and 4582 unique blood culture episodes from 2011-2015. With 33
features and 48 timesteps in each episode, this corresponds to 220
thousand rows of data or 7.25 million hourly measurements.

We defined an episode to consist of hourly sampled laboratory
and vital sign data in the 48 hour period leading up to the acquisition
of a blood culture. As control episodes, we included random 48
hour periods with no blood culture acquisition in the dataset and
labelled them as negative results. Therefore, our response variable
had two classes: a positive class containing patients with positive
blood cultures, and a negative class containing both cases where
a negative blood culture result was received and cases where no
blood culture was obtained.

These episodes consisted of 33 common laboratory and vital
signs (description in appendix B) tracked on nearly all patients that
are admitted to the ICU. From this cohort, 13.1% of the episodes
were associated with a positive blood culture result and 66.3% with
a negative blood culture result. The remaining 20.5% of the episodes
did not have a blood culture drawn at all. This data was included
so that the risk probability output of the model was not conditional
on a blood culture being drawn. Full counting statistics for each of
our datasets is presented in Table 1.

2.3 Data Preprocessing
For consistency and reproducibility, we developed a thorough pre-
processing pipeline for our data; this pipeline takes as input tabular
data for individual patients and outputs a dataset in the TensorFlow
Dataset format of "episodes" of bloodstream infection. Our data
is stored in raw form as individual CSV files for each patient. We
processed these CSV files, split them into episodes, then combined
the episodes into a single multidimensional dataset. During this

Table 1: Number of episodes and proportion of dataset for
our entire dataset, as well as training/validation/testing; out-
comes of negative, no blood culture drawn, and positive.

total negative none positive

total count 6557 4319 1361 877
ratio 65.8% 20.7% 13.3%

train count 4582 3039 940 603
ratio 66.3% 20.5% 13.1%

validation count 1320 852 283 185
ratio 64.5% 21.4% 14.0%

test count 655 428 138 89
ratio 65.3% 21.0% 13.5%

stage, we removed any episodes where the blood culture results
showed common contaminating organisms, as well as repeat blood
cultures for a patient within 7 days following a positive culture. We
maintained at all times a file with alternative names, unit informa-
tion, cutoff values for outliers, and human-readable text regarding
how to interpret the data.

We used outlier cutoff values from a previous study within our
group, performed by Zimmet, et al. [21]. We then performed for-
ward imputation on each patient a maximum of 24 hours into the
future. We filled in any remaining missing values via global feature-
wise median imputation. Our approach to filling in missing values
was based on two core assumptions: first, that variables that are
infrequently sampled (i.e. less than one sample per hour) were un-
likely to change much between samples, so forward imputation
made sense; second, that after a 24 hour time period, forward im-
putation was no longer applicable. For any time period of missing
data greater than 24 hours, we defaulted to the global median value
for that variable to avoid a biased assumption.

After the preparation stages, we shuffled the data into training,
validation, and test sets at a 70/20/10 ratio. We chose a batch size
of 64 episodes for our model training, validation and testing.

3 METHODS
3.1 Model Training
We performed our modeling experiments using the Keras Sequen-
tial framework in TensorFlow. We used Keras components and
layers to construct and optimize model architectures and hyperpa-
rameters. Our experiments were run on the UVA Computer Science
Department’s computing cluster. The specifications of the machines
used for training were as follows: Forty Intel Xeon 4210 CPU cores
(2.2GHz), Four Quadro RTX 4000(8GB) GPUs, and 512GB of main
memory.

We explored three primary classes of models in our experimen-
tation: feed forward neural networks, recurrent neural networks,
and convolutional neural networks. Our modeling experimental
approach was as follows:

(1) Begin with a small instance of each model.
(2) Scale the size of the model up incrementally until perfor-

mance on the held out validation set stops increasing.
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(3) Perform hyperparameter optimization of the large model.
(4) Repeat steps 2 and 3 until no performance gains are realized.

This approach had a few important advantages. We only performed
expensive hyperparameter optimization when necessary. Further,
by scaling up the model size incrementally, we biased for simpler
models and helped to mitigate overfitting.

3.2 Deep Learning Approaches
We now describe the structure and distinguishing features of each
class of model that we experimented with, and discuss briefly why
we chose each class.

3.2.1 Feed Forward Neural Networks. Feed Forward neural net-
works are a classical baseline modeling approach for many types
of data. They are dense, in that they consider the output as a linear
combination of every data point for all variables. Importantly, feed
forward networks do not consider the data as a time series, rather
merely as a collection of data. They do not assign order or maintain
a notion of time dependence in their architecture. We chose to
use this class as described – as a baseline to evaluate whether or
not our deep learning architectures, which do consider order and
time dependence in their architectures, are able to outperform feed
forward networks.

3.2.2 Recurrent Neural Networks. Recurrent neural networks estab-
lish time dependence in their architectures by creating a dense feed
forward layer for every time step, then calculating gradients during
training across those layers. This is coupled with an additional hid-
den layer. This architecture helps to mitigate gradient explosion and
vanishing, and can learn relationships on long time scales. Other
experiments have demonstrated that the GRU achieves similar per-
formance to the Long-Short Term Memory (LSTM) architecture,
with a smaller training cost [7]. For this reason, we decided to focus
our experimentation on the GRU instead of the LSTM.

3.2.3 Convolutional Neural Networks. Convolutional Neural Net-
works (CNNs) were originally designed for image processing, but
have found substantial application in the multivariate timeseries
learning domain [10]. CNNs work by using a weighted filter passed
over blocks of pixels, or in our case time steps and features, and
then performing a pooling operation to combine the output of the
filters into compacted encodings of the input data. By using mul-
tiple convolutional layers, patterns can be learned over the entire
feature space and over long time periods.

3.3 Regularization and Training Optimization
During model training, we employed several methods to promote
stability and generalization of the models. We used the 𝑛𝑎𝑑𝑎𝑚 op-
timizer, which is the well-known 𝑎𝑑𝑎𝑚 optimizer with Nesterov
momentum [9]. We included dropout layers before high-parameter
count layers in our models as regularization. We utilized validation
during model training to identify overfitting in real time. By inte-
grating the framework Weights and Biases into our training and
experimenting loop [3], we tracked several metrics, which were
evaluated on the training set and the validation set after every
epoch: these include binary crossentropy loss, AUC, precision, re-
call, and raw accuracy, as well as true positive, false positive, false
negative, and true negative counts.

The Area Under the Receiver Operating Characteristic (AUC) is
a measure of the tradeoff between true positive rate and false posi-
tive rate of the model at different evaluation thresholds. An AUC
between 0.70 and 0.80 is considered acceptable, an AUC between
0.80 and 0.90 is indicative of a significantly predictive model, and an
AUC above 0.90 is excellent. During training, if the validation AUC
did not increase for 20 consecutive epochs, we halved the learning
rate. If validation AUC did not increase for 30 consecutive epochs,
we ended training to save computational resources and time.

Given the size of our data and the use of deep learning models,
we found that performing traditional hyperparameter optimization
approaches was too expensive in computational time. Therefore,
we focused primarily on iterative, human-driven hyperparameter
optimization. For each learning architecture we iteratively scaled
up the parameter count of each model until performance stopped
increasing. At this point, we began optimizing non-structural hyper-
parameters, such as learning rate, factor of learning rate decrease,
and early stopping thresholds. We found that in general so long
as the initial learning rate was low enough for stable training, the
other hyperparameters made little to no difference in performance.
We chose an initial learning rate of 0.0001, a factor of learning rate
decrease of 0.2, and an early stopping threshold of 30 iterations
without improvement. Details of structural hyperparameters, such
as layer count and width, are provided for our best model from
each class in appendix A.

4 RESULTS
To evaluate and explain our models, we measured performance on
the previously stated metrics on a test set held out from both train-
ing and validation. We also evaluated fold risk on time windows
approaching time of blood culture on models trained on only 24
hour episodes of data. We measured model predictions of proba-
bility of positive outcome, divided by the proportion of positive
outcomes in the data set, on the time windows [-47, -24] through to
[-23, 0] for each episode then plotted these fold risk scores as a time
series. We randomly sampled these predictions for visual inspec-
tion, to check that the time series matched clinical expectations
on known positive and negative cases. To provide understanding
of the clinically relevant features that align with current evidence
based medical practice, we calculated feature importance in our
predictive models [21].

Table 2: Performance statistics of various deep learning mod-
els, evaluated on the test set

Precision Recall AUC

FFN 0.443 0.448 0.767
CNN 0.505 0.516 0.828
GRU 0.558 0.483 0.835

4.1 Modeling Results
In our modeling experiments, we considered three main classes
of models: feed forward neural networks, convolutional neural
networks, recurrent neural networks [5]. We evaluated model per-
formance using a variety of metrics: binary cross-entropy loss,
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AUC, precision, recall, and raw accuracy, as well as true positive,
false positive, false negative, and true negative counts. Our primary
evaluation metric among these was the AUC. We evaluated each
of these metrics on the validation set after every epoch of model
training. This allowed us to identify overfitting during long training
runs and to automatically halt training early when it became clear
that validation AUC was no longer improving.

The model we trained with the highest validation AUC score
was the GRU model, with 0.835 AUC. CNNs achieved similar per-
formance with 0.828 AUC. Feed forward networks performed ade-
quately, although they had a significantly lower AUC score than
both GRUs and CNNs. Both GRUs and CNNs outperformed baseline
the feedforward networks by a significant margin. See Table 2 for
a performance breakdown of each approach.

At first glance, our precision (positive predictive value) and recall
(sensitivity) scores appear low. However, in the clinical setting, these
scores are powerful. As seen in Table 1, 13% of blood cultures return
positive. This indicates a precision of 0.13 on behalf of clinicians.
Our GRU model attains about 0.56 precision. This corresponds to
a large reduction in the rate of false positive blood cultures [1].
The clinicians’ recall, however, is substantially higher than our
models. Our models attain about 0.50 recall; the clinician’s goal
is to approach a recall of 1.0, so that there are no false negatives.
However, we can increase recall at the cost of precision by changing
our positive risk prediction threshold; at 0.90 recall, for example, the
GRU model still attains 0.20 precision. This suggests that our model
can perform competitively in prediction of bloodstream infection.

Figure 2: ROC curve of the best models in each class, com-
pared to a random guesser

4.2 Continuous Monitoring
After we developed sufficiently predictive models on 48 hour time
windows, we took another step towards evaluating our approach’s
clinical viability [11]. We made a new dataset consisting of only the
last 24 hours of each 48 hour time window, then trained the best
architectures from our earlier work on this new dataset. With these
trained models, we returned to the 48 hour time window dataset
and swept over 24 hour subsets of this data to obtain a model output

for 24 time steps in sequence, leading up to the time of blood culture.
This enabled us to evaluate risk dynamically over time.

We divided our model risk probability predictions by the baseline
probability that a patient in our dataset would have a positive blood
culture, equal to the proportion of positive blood cultures in our
dataset. This gave us a fold risk score. A fold risk score at a time
step 𝑡 was considered high risk if it was above 3 [14]. A fold risk
score of 3 or above means that the patient is 3 or more times more
likely than an average patient to return a positive blood culture at
that time step.

In Figure 3, we present the mean fold risk predictions at each
time step for ground truth positive patients (blue) and ground truth
negative patients (red). The band surrounding the mean predictions
indicates the standard error of the mean for each class of patients.
Our model, on average, effectively discriminates between positive
and negative patients. Also notice that, on average, the model’s fold
risk predictions for positive patients increased as the time window
neared the time of blood culture (time zero). In contrast, the fold
risk predictions for negative patients remained low and stable.

Figure 3: Mean fold risk predictions for 24 hour windows.

In the Figure 4a, we examine specific examples, demonstrating
four different fold risk scores for individual patients, two positive
and two negative. Notice that the risk scores for these patients
increases over time for the positive patients, and also that this
behavior occurs well before time zero. This indicates that, for these
patients, the increase in fold risk over time could have resulted in a
blood culture being drawn earlier and a potentially better outcome
for the patient.

It is important to note, however, that our model does not always
display such ideal discriminating ability. There are both false posi-
tive and false negative examples, as demonstrated in Figure 4b. We
similarly display four different fold risk plots, again two positive
and two negative, indicating the sorts of failures we might observe.
Some negative patients are predicted as high risk, and some positive
patients are predicted as low risk.

Our results suggest that our approaches with deep learning could
yield predictive, potentially clinically useful results. Our AUC scores
of 0.8 and higher indicate predictive power, and the fold risk scores
plotted over time behave in a clinically useful way. Patients who
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returned ground truth positive blood cultures show fold risk scores
above 3 and increasing over time. An increasing fold risk score
over time indicates to a doctor or nurse that a patient’s condition
is worsening towards bloodstream infection. This information can
inform a clinician’s decision to draw a blood culture. On the other
hand, a steady low risk score indicates to clinicians that the patient
is unlikely to have a bloodstream infection, and therefore does not
need a blood culture drawn. Thus, our approach could help improve
the cost and efficiency of care while improving outcomes.

4.3 Feature Importance
To examine feature importance, we used Shapely Additive Explana-
tions (SHAP values) to evaluate feature importance in our models
[16]. The SHAP value is a natural way to represent the contribution
of individual features to the predictions of a model. We consulted
clinicians in our group to determine if the features most important
to a model made sense from a physiological standpoint. In addition
to the known important features to bloodstream infection (Tem-
perature, Blood Pressure, and Heart Rate) we identified Blood Urea
Nitrogen (bun), Albumin, Platelet count, Chloride, Creatinine, and
Phosphorus as important features. A plot of these Shapley values
for our best-performing GRU model is presented in Figure 5. Blue
and red points indicate below-mean and above-mean feature values,
respectively. Orientation on the x-axis indicates impact on model
output, or importance.

5 DISCUSSION AND RELATEDWORK
There are three main problem domains that we are working within:
the prediction of bloodstream infection, the general study of multi-
variate timeseries classification, and the use of deep learning for
multivariate timeseries classification. We discuss each notion, along
with related work, in the following text.

5.1 Prediction of BSI
Several other research groups have built machine learning models
to predict various factors of bloodstream infection. In past research,
our group has built predictive models of bloodstream with the goal
of characterizing common predictors and signals of bloodstream
infection, rather than to predict it. Zimmet, et al. used simple pre-
dictive models to identify distinct signatures of various types of
bloodstream infection [21]. In our study, we built on these results
to devise predictive models with the goal of achieving continuous
monitoring as a decision aid for clinicians in the ICU.

Pai, et al. achieved very predictive models, primarily using gra-
dient boosting and random forest search [15]. Our study is distinct
from theirs in several ways: first, we included patients who had no
blood cultures drawn in our dataset. Second, in their data prepro-
cessing stage, they reduced each bloodstream infection to the means
of each feature. We kept the timeseries structure of the episodes
intact. Third, we applied deep learning techniques, whereas they
focused on traditional machine learning approaches, such as ran-
dom forests and XGBoost. Zoabi, et al. applied similar modeling
techniques that were successful in predicting patient outcomes,
given that the patient had a positive blood culture [22]. Our re-
search hypothesis differed from both of these studies; in our study,
we did not bias the model on the assumption that a blood culture

(a) Examples that match clinical expectation

(b) Examples that do not match clinical expectation

Figure 4: Fold risk predictions for 24 hour windows swept
over a 48 hour period for individual patients

had already been drawn or that the patient already had a positive
result.

5.2 Multivariate Timeseries Classification
There are several approaches to multivariate timeseries classifi-
cation (MVTC), the problem setting in which we operated. The
first of such approaches are ensembles of univariate timeseries
classifiers, such as ROCKET [8] and HIVE-COTE2 [13]. Both of
these approaches show strong results on common datasets [18],
but are not effective for our problem. They do not scale well in
time complexity with the size of data and struggle to learn complex
relationships in large datasets. Because of the size of our dataset,
we were unable to compare these models to our deep learning
approaches due to training time constraints.

The second approach is to apply data preprocessing techniques to
reduce a multivariate timeseries classification problem to a simpler
tabular data classification problem. This approach is used by Zoabi,
et al [22]. They processed their data by taking the episode-wise
mean of each feature. This approach allowed them to use traditional
ML techniques, such as random forests and XGBoost. This approach
help them achieve good results in a static setting, but was not useful
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Figure 5: Shapley values for our variables evaluated from a
GRU model displayed as a beeswarm plot. Descriptions of
each variable are included in appendix B.

for us given our goal of achieving a machine learning model capable
of continuous monitoring.

The third approach, which we focused on in our study, is to use
deep learning methods to learn on the data in its raw, multivariate
timeseries format. These approaches have a few key advantages:
they can reason over both temporal and feature space, they scale
well in time complexity with the size of the data, and they have
been demonstrated to achieve very strong predictive power on other
difficult timeseries classification tasks [6] [20]. In our study, we had
both the amount of data and computing resources to effectively
utilize deep learning approaches.

5.3 Deep Learning for Timeseries Problems
Deep Learning has recently been very successful in tackling multi-
variate timeseries problems in other domains. For example, Bowes,
et al. recently demonstrated the predictive power of RNNs to fore-
cast the groundwater table in flood prone coastal cities [4]. They ap-
ply their deep learning timeseries forecasting techniques to ground
water, rainfall, and sea level timeseries in a multivariate timeseries
dataset.

The Great Multivariate Timeseries Bakeoff examined the predic-
tive power of a variety of approaches [18], including deep learning,
on a set of 30 datasets and found that deep learning approaches
compete with the very best non-deep learning approaches even on
small datasets. Deep learning approaches beat traditional machine
learning approaches on larger datasets. Our dataset was larger than
any of the 30 used, so we expected deep learning to outperform
traditional timeseries classification approaches.

In their review paper, Fawaz, et al. found that convolutional
methods, such as deep residual networks and fully convolutional
networks, achieve the current state of the art results on a wide
variety of multivariate timeseries classification problems [12]. They
found that these deep neural networks scaled better in both number
of example and length of timeseries than other approaches. They
also found that, in order to achieve state of the art performance
with deep learning models, large amounts of data are needed. We
have a sufficiently large amount of data to achieve the state of the
art performance described by their survey.

6 CONCLUSION
Our work demonstrates that deep learning models show strong
predictive power in the setting of bloodstream infection and paves
the way for trials to evaluate its effectiveness in reducing the vol-
ume of blood cultures drawn and thereby reducing mortality due
to bloodstream infection in the ICU. The continuous monitoring
capability of our model could provide doctors and nurses the ability
to better determine when to draw blood cultures. Our modeling
approach also provides explanations to help build clinical trust and
inform clinical decision making.
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A MODEL ARCHITECTURES

Table 3: Architecture of CNN with highest validation AUC

Type Parameters Output Shape
0 InputLayer 0 ,48,33,1
1 Conv2D 320 None, 48, 33, 32
2 Conv2D 9248 None, 48, 33, 32
3 MaxPooling2D 0 None, 24, 17, 32
4 Conv2D 18496 None, 24, 17, 64
5 Conv2D 36928 None, 24, 17, 64
6 MaxPooling2D 0 None, 12, 9, 64
7 Conv2D 73856 None, 12, 9, 128
8 Conv2D 147584 None, 12, 9, 128
9 MaxPooling2D 0 None, 6, 5, 128
10 Flatten 0 None, 3840
11 Dense 983296 None, 256
12 Dense 257 None, 1

Table 4: Architecture of GRU with highest validation AUC

Type Parameters Output Shape
0 InputLayer 0 ,48,33
1 Masking 0 None, 48, 33
2 GRU 6432 None, 48, 32
3 BatchNormalization 128 None, 48, 32
4 Dropout 0 None, 48, 32
5 GRU 18816 None, 48, 64
6 BatchNormalization 256 None, 48, 64
7 Dropout 0 None, 48, 64
8 Flatten 0 None, 3072
9 Dense 3073 None, 1

Table 5: Architecture of Feed Forward Baseline

Type Parameters Output Shape
0 InputLayer 0 ,48,33
1 Masking 0 None, 48, 33
2 BatchNormalization 132 None, 48, 33
3 Flatten 0 None, 1584
4 Dense 1585 None, 1

B FEATURES
Feature abbreviations and human readable names:

temp: Core Body Temperature
bun: Blood Urea Nitrogen
dbp: Diastolic Blood Pressure
albumin: Albumin
platelet: Platelet Count
chloride: Chloride
creatinine: Creatinine
phosphorus: Phosphorus
alp: Alkaline Phosphate
s_so2: Supersaturated Oxygen
ast: Aspartame Aminotransferase
pco2: Partial Pressure of Carbon Dioxide
spo2: Oxygen Saturation
glucose: Blood Glucose
ptt: Partial Thromboplastin Time
heart_rate: Heart Rate
potassium: Potassium
sodium: Sodium
x_hr_rr: Cross Correlation of Heart Rate and Respiratory Rate
alt: Alanine Aminotransferase
magnesium: Magnesium
lactate: Lactate
wbc: White Blood Cell Count
bilirubin: Total Bilirubin
txp: Patient is a Transplant Recipient
s_hr: Standard deviation of Heart Rate
s_rr: Standard deviation of Respiratory Rate
age: Age
troponin: Troponin
calcium: Calcium
resp_rate: Respiratory Rate
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